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Malaria-infected red blood cells (iRBCs) become less deformable with the

progression of infection and tend to occlude microcapillaries. This process has been

investigated in vitro using microfluidic channels. The objective of this paper is to

provide a quantitative basis for interpreting the experimental observations of iRBC

occlusion of microfluidic channels. Using a particle-based model for the iRBC, we

simulate the traverse of iRBCs through a converging microfluidic channel and

explore the progressive loss of cell deformability due to three factors: the stiffening

of the membrane, the reduction of the cell’s surface-volume ratio, and the growing

solid parasites inside the cell. When examined individually, each factor tends to

hinder the passage of the iRBC and lengthen the transit time. Moreover, at sufficient

magnitude, each may lead to obstruction of narrow microfluidic channels. We then

integrate the three factors into a series of simulations that mimic the development

of malaria infection through the ring, trophozoite, and schizont stages. These

simulations successfully reproduce the experimental observation that with

progression of infection, the iRBC transitions from passage to blockage in larger and

larger channels. The numerical results suggest a scheme for quantifying iRBC

rigidification through microfluidic measurements of the critical pressure required for

passage. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4817959]

I. INTRODUCTION

Healthy red blood cells (RBCs) have a biconcave shape with a diameter of 7–8 lm and a

thickness of 2–3 lm.1 During their normal function, RBCs traverse the circulatory system,

squeezing through capillaries as small as 3 lm in diameter. Their high deformability is mainly

due to their excess surface area and extremely flexible membrane. When infected by the

malaria-causing parasite Plasmodium falciparum, however, the RBC gradually loses its deform-

ability through the three stages of infection—ring, trophozoite, and schizont—as the parasite

grows and multiplies asexually within the infected RBC (iRBC).2–4 A direct consequence of the

hardening of the iRBC is occlusion of microcapillaries, which causes the most severe symptoms

of malaria.5

The rigidification of iRBC has been quantified using several experimental protocols: micro-

pipette aspiration,6 stretching by optical tweezers.7–9 and passage through microfluidic

channels.10–12 Aspiration and stretching of RBCs directly test their deformation under mechanical

forcing and have yielded considerable insight into the hardening of the cells. So far, three mecha-

nisms have been identified for the loss of deformability of the iRBC. First, the iRBC membrane

hardens as parasitogenic proteins induce abnormal cross-linking of the spectrin network.13

Second, transport of liquid and proteins across the compromised cell membrane alters the iRBC’s

surface-to-volume ratio and swells the cell.14,15 Finally, the solid parasites inside the iRBC,
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known as merozoites, mechanically hinder cell deformation, especially when they grow in size

and multiply by mitosis in the schizont stage.6,9

With the advent of microfluidic assaying, microfluidic channels have been increasingly

used as a tool for probing the mechanical property of cells. For malaria-infected RBCs, micro-

fluidics brings one great advantage: it mimics the geometry in microcapillaries and in the

spleen,16 where the red cells are forced through narrow passages. Consequently, it may poten-

tially bridge the gap between idealized mechanical measurements using micropipettes and opti-

cal tweezers and in vivo events of interest, such as occlusion of capillaries and filtering of

hardened RBCs in the spleen.2,16,17 Several groups10–12,18–21 have employed microfluidic chan-

nels to probe the deformability of healthy and malaria-infected red cells. Typically, a prescribed

pressure drop is applied to push iRBCs through microfluidic channels of various sizes. For

example, Shelby et al.10 demonstrated that with progression of the infection, the iRBC hardens

gradually and blocks larger and larger pores (Fig. 1). In the development of biomechanical

assay, Ma and coworkers12,22,23 measured the critical pressure required to push a cell through a

contraction, and extracted a cortical tension through the Young-Laplace equation. This serves

as a general indicator of the cell’s rigidity. So far, however, experimental work in this area has

remained largely qualitative. It would be desirable to establish a quantitative connection
between the geometric and mechanical attributes of iRBCs and their ability to traverse micro-

channels or blood vessels of a certain size.

Such a quantification typically requires a computer simulation,11 and only a few have

appeared in the literature in recent years. Quinn et al.24 used dissipative particle dynamics to

compute the passage of a healthy RBC through a microfluidic channel. Bow et al.11 extended

that work to ring-stage iRBCs. Aingaran et al.17 used finite elements to compute the critical

pressure required to push gametocytes of Plasmodium falciparum through a splenic slit. Imai

et al.25 presented a simulation of an iRBC blocking the entry to a narrow microfluidic channel.

These studies have illustrated the capability of several numerical methods for simulating the

passage of RBCs through microfluidic channels. But none has systematically analyzed how the

structural and mechanical changes due to malaria infection affect the dynamics of iRBC in

microfluidic channels.

FIG. 1. Passage and blockage of microfluidic channels of different sizes by iRBC in the ring, trophozoite, and schizont

stages of infection. The flow goes from the right to the left. Reprinted with permission from Shelby et al., “A microfluidic

model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes,” Proc. Natl. Acad. Sci. U.S.A.

100, 14618–14622 (2003). Copyright 2003 The National Academy of Sciences, U.S.A.
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This paper aims to provide such a quantitative analysis through a systematic parametric

study. By using a particle-based formalism in three dimensions (3D), we simulate the transit

of healthy and infected RBCs through a prototypical microfluidic channel with a contraction.

The surrounding fluid and the red cell, including the membrane, cytosol, and possibly the

merozoite, are all discretized by particles in the framework of smoothed particle hydrodynam-

ics (SPH).9 The interaction among the membrane particles is designed to produce an overall

constitutive behavior similar to the commonly used hyperelastic models. By studying the

transit time and critical condition for occlusion, we delineate the contribution to iRBC rigidi-

fication from each of the three mechanisms, hardening of the membrane, loss of excess

surface area, and growth of the merozoite. The results not only shed light on in vivo RBC

behavior in microcapillaries and in the spleen but also provides guidelines for designing sen-

sitive microfluidic assays.

II. PHYSICAL MODEL AND NUMERICAL SCHEME

Most of the cell-mechanical simulations so far are based on continuum models, ranging

from the liquid drop model to vesicle models.26–28 Particle-based models are relatively new,

and by virtue of their meshless formalism, enjoy greater flexibility in representing morphologi-

cal and structural changes in the cell or intracellular components.9 It is mostly this advantage

that drew us to a particle-based model.

The physical model in this work is similar to that used by Hosseini and Feng9 and Imai

et al.25 We discretize the cytosol and surrounding plasma by particles much as in traditional

SPH models for flow computation. The cell membrane is tesellated into more or less regular

triangles, the vertices being represented by particles and the edges by springs. Thus, the mem-

brane is discretized into a particle-spring network. The parasite is realized numerically by con-

straining a set of particles to move as a rigid body,29 which floats in the cytosol. The motion of

the “fluid particles,” representing the cytosol and plasma, is computed using the conventional

SPH method and reproduces the fluid flow governed by the Navier-Stokes equations. The mem-

brane particles experience bending and in-plane elasticity in additional to fluid pressure and vis-

cous stress, as explained below.

The numerical solution is based on the open-source SPH solver parallelSPHysics,30 devel-

oped for simulating fluid flows with free surfaces.31,32 On the basis of the original parallelized

FORTRAN code, we have adopted an algorithm for floating solid objects to simulate the para-

site and added the treatment of the cell membrane. The parallelization is realized through do-

main decomposition, and the interaction among particles that reside in different cores is realized

by the MPI formalism.30

A. Cell membrane elasticity

The cell membrane is represented by a discrete particle-spring network, which will be

endowed with elasticity against in-plane strain and bending. We use linear springs with a

stretching coefficient of ks such that the elastic energy for in-plane deformation is

Es ¼
X

i;j

ks

2
ðLij � Lij;0Þ2; (1)

where the summation is over all pairs of adjacent vertices i and j; Lij is the length of the spring

connecting them, and Lij;0 is its resting length. For bending, Hosseini and Feng9 used the

Helfrich bending energy33 to compute the distribution of bending forces on the membrane par-

ticles. We found this formalism to be quite sensitive to the quality of the mesh; when the cell

undergoes large deformation, the distorted triangles tend to produce elastic instability due to

inaccurate evaluation of the local membrane curvature. Thus, we decided to adopt the simpler

and more robust bending model of Wada et al.,34,35 with a bending coefficient kb and bending

energy
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Eb ¼
X

i;j

2kb tan2 hij

2

� �
; (2)

where the summation is over all pairs of neighboring triangles i and j, and hij is the angle

between their normals. Note that this bending energy assumes zero spontaneous curvature for

the membrane.

In addition, the red cells are known to conserve their surface area; and in our particle

model, this is implemented through an energy penalty against local area dilatation

EA ¼
kd

2

XN

j

Aj
0 � Aj

Aj
0

 !2

Aj
0; (3)

where kd is a constant, Aj
0 is the undeformed area of the jth triangle, and the summation is over

all N triangles of the RBC membrane. Finally, we include an energy penalty against the change

of the total cell volume

EV ¼
kv

2
V0

V0 � V

V0

� �2

; (4)

where kv is a constant coefficient, and V0 is the initial volume of the cell. Under large forcing

and severe cell deformation, this volume constraint helps to prevent fluid particles from penetrat-

ing the membrane. The two constrains in Eqs. (3) and (4) are similar to those used by Discher

et al.36 and Fedosov et al.,8 but we have excluded their constraint on the total surface area. In all

simulations, the cell surface area and volume are conserved to within 2%. Using Eqs. (1)–(4), we

write the total elastic energy of the cell membrane as Em ¼ Es þ Eb þ EA þ EV and calculate the

elastic force acting on the membrane particles as

f m ¼ �@Em=@r: (5)

The elasticity of our discrete network of particles and springs can be related to continuum

models for an elastic membrane by considering the limit of small strain. For a regular and iso-

tropic triangular mesh, the network has an effective shear modulus Gs ¼
ffiffi
3
p

4
ks, Young’s modu-

lus E ¼ 2ffiffi
3
p ks, Poisson ratio � ¼ 1

3
, and area dilation modulus K ¼

ffiffi
3
p

2
ks.

37 The bending constant

kb can be related to the Helfrich coefficients as:38 kb ¼ 2
ffiffiffi
3
p
ðjc þ jg=2Þ ¼ 2

ffiffiffi
3
p

j; jc and jg

being the coefficients for the mean curvature and the Gaussian curvature terms in the Helfrich

bending energy, and j the average bending modulus.8,36 There is a small amount of nonuni-

formity in our tessellation, necessitated by the requirement of covering the curved biconcave

surface of the RBC. This may have introduced small deviations from the above relationships.

For nonlinear elasticity under large strain, Omori et al.37 have compared the strain-hardening of

spring networks with that of the continuum Skalak and Mooney-Rivlin models. For most of the

simulations reported here, we have used a fixed bending constant kb ¼ 6:93� 10�19 J, chosen

according to Hochmuth and Waugh.39 To examine the role of in-plane elasticity, we will vary

the stretching constant ks in a range consistent with measured shear modulus in healthy RBC

and iRBC in different stages of infection. Based on such parameters, the ratio between the

bending forces and the in-plane stretching forces can be estimated as n ¼ kb=ða2ksÞ ¼ Oð10�3Þ,
where a is the effective cell radius. Thus, bending contributes little to the membrane dynamics

and RBC deformation.9

Finally, as is commonly done in the literature,28,40 we have also employed a repulsive

potential to avoid solid-solid contact. Under large deformation, the cell membrane particles

tend to penetrate into the wall or the parasite, e.g., when the cell squeezes through narrow

channels. We adopt the cut-off spring model28,40 that uses a repulsive potential with a finite

range and a linear elastic constant kr. In our case, numerical experiments show that setting the

range to the initial nearest-neighbor separation is a good choice. We have also tested different
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kr values and found that the results are insensitive to kr within the range of 2� 10�4 to

10�2 N=m. We have used kr ¼ 2� 10�3 N=m for all the results reported.

B. Governing equations and numerical algorithm

As a tool for computing fluid flow, the SPH method has been used widely, and several

comprehensive reviews have appeared in recent years.29,41 For our current purpose, we will

only list the governing equations and outline the solution algorithm. In the SPH formalism, con-

tinuum governing equations are discretized onto particles more or less uniformly distributed in

space. A kernel function is defined on each particle so that a continuous field for any physical

quantity, including velocity, pressure, and density, can be constructed from the discrete particle

values through spatial averaging. Although projection schemes are available for imposing

incompressibility,42–44 we have adopted a weakly compressible scheme for simplicity. Thus, we

have the following equations governing the motion of the particles:

Dq
Dt
¼ �qr � v; (6)

Dv

Dt
¼ 1

q
r � s� 1

q
rpþ f m; (7)

p

p0

¼ q
q0

� �7

� 1; (8)

where D/Dt is the material derivative taken on each moving particle, s is the viscous stress ten-

sor, and f m is the membrane force per unit mass from Eq. (5), and is zero for fluid and para-

sites particles. The particles that constitute the solid parasite move as a rigid body according to

the total force and torque exerted by the surrounding cytosol. The reference density q0 and ref-

erence pressure p0 are chosen to ensure a high “speed of sound” and approximate incompressi-

bility. These, together with adequate spatial resolution, maintain the density fluctuation to

within 1% in all simulations. We advanced all particles explicitly by a two-step prediction-cor-

rection algorithm.31 The particle shifting strategy45 is adopted to prevent tensile instability.

C. Cell geometries

For the healthy RBC, we adopt the biconcave shape specified by the formula of Evans and

Fung,1

TðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðr=R0Þ2

q
½C0 þ C1ðr=R0Þ2 þ C2ðr=R0Þ4�; (9)

where T(r) is the thickness of the RBC as a function of distance r from the center axis, and R0

is the radius of the RBC, measured from the center to the outer edge (Fig. 2). We have taken

the following values: R0 ¼ 3:9 lm; C0 ¼ 0:81 lm; C1 ¼ 7:83 lm; and C2 ¼ �4:39 lm; the cen-

ter has a thickness of T1 ¼ 0:81 lm and the largest thickness at the rim is T2 ¼ 2:4 lm.

Through the various stages of infection, the iRBC changes its volume, shape, and surface

area while the parasite grows in size. A survey of experimental measurements of iRBC and par-

asite dimensions reveals considerable variations not only among different studies but also

among cells of the same cohort.6,14,15,46 We have strived to capture the overall trend of these

data and adopted the dimensions in Table I. In the ring-stage, the shape and size of the iRBC

do not differ appreciably from their healthy counterparts,15 and we have adopted the shape in

Fig. 2 for the ring-stage iRBC as well. The merozoite is a disc of radius R ¼ 1 lm and thick-

ness h ¼ 0:5 lm. Drastic morphological changes of the iRBC occur in the trophozoite and

schizont stages. During the trophozoite stage, the merozoite continuously digests cytoplasmic

hemoglobin and grows from 2.0 lm to 4.0 lm in diameter. Meanwhile, the cell surface area

remains within a narrow margin of variation.6,14,15,46 Thus, the growing parasite progressively
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swells the cell and gives it an asymmetric biconcave shape. Here, we represent the iRBCs at

the early and late trophozoite stages by the shapes of Fig. 3, with the merozoite being a sphere

of increasing radius R. In the schizont stage, the iRBC undergoes a marked reduction in volume

and surface area and assumes a more or less spherical shape.14,15,47,48 The merozoites multiply

and form a tightly packed cluster that may occupy as much as 80% of the iRBC’s volume.4,15

We represent the schizont-stage iRBC as a spheroid with radius of 3.2 lm and thickness of

4 lm (Fig. 4). The cluster of merozoites is modeled as a single spheroidal particle of the same

aspect ratio as the iRBC, with radius R ¼ 2:4 lm and thickness h ¼ 3 lm.

The bending energy introduces a subtlety in realizing the prescribed cell shapes in our

particle-spring model. At the start of a simulation, we initialize the resting length of all springs

to that corresponding to the tessellation of the underformed cell surface. This relieves all in-

plane stretching. For the healthy and ring-stage cells, the shape of Eq. (9) is very close to a

minimizer of the bending energy.33,49 Therefore, turning on the bending energy induces less

than 2% of adjustment in the cell dimensions. For the trophozoite and schizont stages, on the

other hand, the chosen iRBC geometries differ considerably from the bending-energy mini-

mizer. This does not constitute a complication in practice because, as explained in Sec. II A,

cell deformation will be dominated by hydrodynamic forces and in-plane elasticity in our simu-

lations, and bending has negligible effects.

III. VALIDATION: SIMULATION OF TANK-TREADING

Hosseini and Feng9,50 have previously tested several aspects of particle-based RBC models.

In this section, we simulate the tank-treading motion of the red cell in a simple shear flow as a

validation of our cell model, numerical algorithm, and resolution. This is one of several modes

of motion for a red cell in shear flow, and occurs at high shear rates.51 The cell is elongated to

FIG. 2. The healthy RBC and the ring-stage iRBC have the same biconcave shape described by Eq. (9), with the smallest

and largest thickness being T1 ¼ 0:81 lm and T2 ¼ 2:4 lm. The spatial coordinates are marked in microns.

TABLE I. Dimensions of the healthy and infected red cell in different stages. se ¼ S=ð4pa2Þ denotes the excess surface

area ratio of the cell, where a is the effective cell radius defined as the radius of a sphere having the volume V of the cell.

The last column indicates the dimensions of the parasite.

Case S (lm2) V (lm3) se a ðlmÞ Parasite (lm)

Healthy 132 92 1.34 2.80 (none)

Ring 132 92 1.34 2.80 R ¼ 1; h ¼ 0:5

Early trophozoite 132 105 1.23 2.92 R ¼ 1:4

Late trophozoite 132 116 1.15 3.02 R ¼ 1:7

Schizonte 97 85 1.04 2.72 R ¼ 2:4; h ¼ 3
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a cigar-like shape and its membrane rotates around the cytoplasm at a frequency that is linearly

proportional to the shear rate of the flow.52

Our numerical results will be compared with those of Sui et al.,53 a careful computational

study using the immersed boundary method in a lattice Boltzmann framework. The geometric

setup and key physical parameters are matched between the two studies. The computational do-

main has dimensions Lx � Ly � Lz ¼ 6:4a� 5a� 5a. The flow is in the x direction, driven by

the motion of the top and bottom walls (z ¼ 62:5a) at a constant velocity in opposite direc-

tions. On the boundaries in the flow direction (x ¼ 63:2a) and the neutral direction

(y ¼ 62:5a), we impose periodic boundary conditions. A healthy red blood cell is placed at the

center of the computational domain with an initial title angle of p=4. The cell shape is given by

Eq. (9) and its effective radius is a ¼ 2:8 lm.

We match the following dimensionless groups with Sui et al.:53 the cytosol-to-surrounding-

fluid viscosity ratio k ¼ lc=l ¼ 1, density ratio qc=q ¼ 1, and the capillary number

Ca ¼ laK=Gs, where Gs and K are the shear modulus of the membrane and the shear rate,

respectively. Inertia is negligible in both studies; the Reynolds number Re ¼ qKa2=l is fixed at

0.1 in Sui et al.,53 and varies between 0.014 and 0.072 in our simulations. For membrane elas-

ticity, Sui et al.53 employed the continuum model of Skalak et al.54 for in-plane deformation,

and neglected bending altogether. For a meaningful comparison, we have matched the in-plane

shear modulus Gs of our elastic network to that of the Skalak model at the limit of small strain

and carried out simulations with and without bending. In the former case, we have used a phys-

iologically appropriate bending constant kb ¼ 6:93� 10�19 J,39 which gives a ratio between the

bending and shear moduli n ¼ kb=ða2ksÞ ¼ 7:4� 10�3, indicating a negligible role of bending

relative to in-plane elasticity. Finally, to test convergence with spatial resolution, we have used

a coarse resolution (with Np ¼ 440 membrane particles and a nominal particle spacing of

l0 ¼ 0:6 lm) and a fine resolution (Np ¼ 1058; l0 ¼ 0:4 lm). The total number of particles are

21698 and 63287, respectively.

FIG. 4. The iRBC has a spheroidal shape at the schizont stage, with diameter D ¼ 6:4 lm and thickness T ¼ 4 lm.

FIG. 3. The cell geometries at (a) the early trophozoite stage, with ðD1; D2; T1; T2Þ ¼ ð7:77; 7:76; 2:7; 3:0Þ lm, and (b)

the late trophozoite stage, with ðD1; D2; T1; T2Þ ¼ ð7:80; 7:72; 2:8; 4:0Þ lm.
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Following Sui et al.,53 we have tested four Ca values from 0.57 to 2.8. In this range, the

RBC executes a tank-treading motion of increasing frequency, with the cell being more elon-

gated at higher Ca. Figure 5 depicts the temporal evolution of the cell’s length L and width W
for Ca ¼ 0:93. First, the bending elasticity affects the cell shape and motion only slightly; it

changes the cell length by less than 1% and increases the frequency of tank-treading by approx-

imate 3%. Second, the numerical results obtained at the coarse and fine resolutions differ by

less than 1%. This confirms convergence of the simulation with respect to the number of par-

ticles. Finally, our numerical results are in close agreement with that of Sui et al.53 We have

accurately captured the oscillation of the cell’s length and width during tank-treading. But

quantitative discrepancies can be discerned; our model slightly underestimates the deformation

of the cell both in L and W.

To compare the simulations at different Ca values, we plot in Fig. 6 the time-averaged val-

ues of L and W as well as the period of tank-treading as functions of Ca. For �L and �W , the

agreement is excellent throughout the Ca range. On the other hand, our frequency f is mostly

lower than that predicted by Sui et al.,53 and the discrepancy increases with Ca. For example,

our f at fine resolution without bending falls below that of Sui et al.53 by 1.4% to 12.8% as Ca
increases from 0.57 to 2.8. Bending elevates the frequency slightly by 3.9% at Ca ¼ 0:57 and

1.8% at Ca ¼ 2:8. A possible cause of this discrepancy is the different constitutive models used

in the two simulations. With larger deformation at higher Ca, the strain-hardening in the Skalak

FIG. 5. Tank-treading: temporal evolution of the cell length L and width W for Ca ¼ 0:93. Three of our simulations, at

coarse and fine spatial resolutions with and without bending, are compared with the result of Sui et al.,53 which does not

include bending elasticity.

FIG. 6. (a) The average RBC length �L and width �W as functions of the capillary number Ca. (b) The dimensionless fre-

quency f of tank-treading, scaled by the shear rate K, as a function of the capillary number Ca.
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model becomes more pronounced than in our spring network model. However, it is unclear

why this difference does not manifest itself as strongly in the dimensions of the cell.

IV. RESULTS

The computational domain is schematically depicted in Fig. 7. The geometry and dimen-

sions of the microfluidic channel are inspired by recent experimental setups.10,12,22,23 The total

length of the domain is L ¼ 24 lm. The entrance has a rectangular cross section of width W ¼
12 lm and height H ¼ 4:8 lm. The same height is maintained throughout the entire conduit,

but the width contracts through a 45� shoulder to a narrower width w. The length of the narrow

segment is fixed at l ¼ 8 lm, but its width takes on one of three values, w ¼ 3:2; 4 and 4:8 lm,

which will be called the narrow, medium, and wide channels, respectively. Further downstream

is a sudden expansion to a cross-section that is identical to the one at the entrance. The red cell

always enters “edgewise,” that is, with its circular mid-plane horizontal and midway between

the top and the bottom of the microchannel in the schematic.

Based on physiological values,55,56 we have set the density and viscosity of the blood

plasma (or surrounding fluid in the microfluidic channel) to be l ¼ 10�3 Pa � s and

q ¼ 103 kg=m�3. In healthy red cells, the cytosol viscosity is typically 3–6 folds higher than

the plasma viscosity because of the hemoglobin and other proteins in the cytosol.57 This viscos-

ity ratio can affect the cellular dynamics.58 Moreover, during malaria development, the parasite

continually digests the hemoglobin. Thus, the cytosol viscosity may evolve in time, although no

quantitative results have been found in the literature. For simplicity, we have assigned equal

viscosity to the cytosol and the plasma (k ¼ 1) as did many previous simulations.25,53,59

Besides, the density of all fluid and solid components is set to q ¼ 103 kg=m�3.

To simulate a pressure-driven flow through the microchannel, we impose periodic boundary

conditions between the entrance and the exit of the channel, and apply a constant body force on

all the particles to drive the flow. The body force per unit mass Fx can be related to the effective

pressure drop across the length of the channel as such: DP ¼ qFxL. This setup is preferable to

imposing a pressure gradient directly because the SPH methodology handles the periodic bound-

ary conditions more easily.43 From this pressure drop, we can define a characteristic velocity

U ¼ DPw2=ð8lLÞ and a characteristic time T ¼ L=U. Now a capillary number can be defined as

Ca ¼ lU

Gs
: (10)

In the results to be presented below, we fix DP to be 12 Pa, on the same order of magnitude as

in recent microfluidic experiments on iRBC deformability.11,12 Under these conditions, Ca lies

FIG. 7. Schematic of the computational domain. The overall dimensions of the channel are L ¼ 24 lm;W ¼ 12 lm, and

H ¼ 4:8 lm, with three segments of equal length l ¼ 8 lm. The narrow section in the middle has a width w ¼ 3:2; 4, and

4:8 lm for the narrow, medium, and wide channels.
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between 2:56� 10�3 and 2:88� 10�2 for the range of w and Gs values to be examined. The

Reynolds number, defined using the characteristic velocity U and the effective cell radius a, is

on the order of 10�3.

To establish numerical convergence of the results with respect to spatial resolution, we

have simulated passage of the healthy RBC through the wide channel (w ¼ 4:8 lm) using two

resolutions. The coarse resolution has a nominal particle separation l0 ¼ 0:6 lm, with 440 par-

ticles on the RBC membrane and 10 977 particles overall. For the fine resolution, l0 ¼ 0:4 lm

and we deploy 1058 particles on the membrane and 29 648 particles overall. The cell trajecto-

ries for these two cases agree within 3% throughout the passage, and the overall transit time

differs by less than 5%. We have further checked the cell shape and the membrane strain con-

tours, and the differences between the two cases are very small. All subsequent results are pre-

sented using the fine resolution.

As explained in the Introduction, the rigidification of iRBCs has three potential causes, the

stiffness of the membrane, the cell geometry, and the internal components, including the shape

and size of the merozoite. In the following, we will first investigate each element separately

while fixing the other parameters at baseline values. Then, we will combine all three changes

together as occurs during a real infection, and examine how the overall rigidity of the iRBC

evolves through the ring, trophozoite, and schizont stages.

A. Effect of the membrane stiffness

According to prior measurements using micropipette aspiration, the healthy RBC has a

membrane shear modulus around 5 lN=m.6,60 After infection by malaria, the merozoites export

parasitogenic proteins onto the membrane that remodel the spectrin network.61,62 A direct con-

sequence of this modification is an increase in the membrane rigidity. Experimental evidence6,13

shows that the shear modulus of the membrane remains largely constant through the ring, troph-

ozoite, and schizont stages between 15 and 25 lN=m. In this subsection, we fix the resting

shape of the cell to that of the healthy RBC, and systematically examine the effect of increas-

ing the shear modulus Gs, from 5 lN=m to 35 lN=m. No merozoite will be included inside the

cell. Specifically, we will study the passage or arrest of the cells in the wide, medium, and nar-

row microchannels. The change in Gs is effected by varying the stretch constant ks of the

springs in our particle-spring network. The Young’s modulus and area dilation modulus will

change simultaneously as well.

Figure 8 depicts the transit of the RBC through the narrow channel at three values of the

shear modulus. Similar trends are seen in the medium and wide channels. The instantaneous

position of the RBC is indicated by xc, the longitudinal coordinate of the centroid of all

FIG. 8. The trajectories of RBCs through the narrow channel (w ¼ 3:2 lm) for three values of the shear modulus Gs. The insets

show top-view snapshots of the cell during the transit with color contours of the local stretching c of Eq. (11), at t ¼ 0:27 and

t ¼ 1:9 for Gs ¼ 15 lN=m (red arrows) and at t ¼ 2:1 for Gs ¼ 25 lN=m (blue arrow).
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membrane particles, scaled by the channel length L. Time is scaled by the characteristic time T.

The horizontal dashed lines indicate the entry and exit to the narrow middle segment. Since the

undeformed RBC has a diameter of 7.8 lm, more than twice the width of the narrow passage,

the cell undergoes large deformations. The cell with the softest membrane (Gs ¼ 5 lN=m)

passes through the contraction readily, while the one with the intermediate Gs takes longer

time. The cell with the highest membrane modulus (Gs ¼ 25 lN=m) fails to traverse the chan-

nel; it blocks the entry to the narrow segment. The insets show snapshots for the latter two

runs. On the surface of the cell, we have superimposed contour plots of the local deformation

c. For the ith membrane particle, ci is defined by averaging the deformation of all the Ni springs

connected to it,

ci ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNi

j¼1

Lij

Lij;0
� 1

� �2

Ni

vuuut
; (11)

where Lij and Lij;0 are the current and resting lengths of the springs. Generally, the membrane suf-

fers large shear deformation in the dimple region, i.e., the thin central area of the undeformed

RBC, and relatively small strains at the rim. The stretching c can reach 30% for Gs ¼ 15 lN=m

after the cell enters the narrow channel completely. Also, we notice that the squeezing has pro-

duced one or more longitudinal wrinkles on the membrane, typically at the central dimple.

Because of the slight asymmetry in the initial tessellation of the surface, the wrinkle and the

stretching contour appear slightly asymmetric.

The most obvious effect of Gs is in slowing down the transit. This is evident from compar-

ing the trajectories for Gs ¼ 5 lN=m and 15 lN=m in Fig. 8. To be more quantitatively, we

define a transit time tt as the interval that starts with the cell’s forefront reaching the entry and

ends with its centroid leaving the exit. Figure 9 plots the transit time as a function of the mem-

brane shear modulus for the three channels. Membrane rigidity is seen to lengthen the transit

time in all channels. Moreover, this effect becomes more pronounced for narrower channels.

For the wide and medium channels (w ¼ 4:8 and 4 lm), increasing Gs from 5 to 35 lN=m

increases tt by about 20% and 30%, respectively. For the narrow channel (w ¼ 3:2 lm), on the

other hand, tt diverges at Gs ¼ 25 lN=m; the cell blocks the channel and fails to pass.

Cell blockage at Gs ¼ 25 lN=m indicates that the supplied DP, corresponding to Ca
¼ 4� 10�3 in this case, is insufficient to deform the cell to the extent required for passage.

Numerical experiments show that doubling DP will lead to passage of this cell. Thus, there

exists a critical pressure for passage between these two situations, and such a pressure is

expected to correlate directly with the membrane modulus. Previously, Ma and coworkers12,22,23

FIG. 9. The transit time tt, made dimensionless by T, as a function of the membrane shear modulus Gs for the three

channels.
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have used such a critical pressure to probe the cortical tension of red blood cells. This tension

is assumed to be constant in the membrane, regardless of the local deformation, and is extracted

from the critical pressure drop via the Young-Laplace equation. With the help of simulations

that properly account for the membrane elasticity, a similar procedure can be developed as a

means of measuring the cell membrane modulus.

We end this subsection by pointing out a subtle feature of the blockage. In microfluidic

experiments, blockage is often incomplete. Because of the bending elasticity of the membrane,

the corners of the typically rectangular cross-section may not be blocked, and a fluid flow per-

sists through these small openings.10,12,63 Our simulations appear also to show a thin gap

between the wall and the cell membrane; see insets of Fig. 8. This clearance is due to the repul-

sive force between the cell membrane and the wall and is roughly equal to the nominal particle

separation l0. Thus, it is too small for particles to slip through, even at the corners, and the

blockage of the microchannel is complete. This subtle difference between experimental and

computational blockage may lead to potential errors in predicting the cell stiffness.64

B. Effect of the cell geometry

In the ring stage, the malaria-infected RBC retains the shape and size of the healthy RBC.

Advancing into the trophozoite and the schizont stages, however, it undergoes dramatic mor-

phological changes (cf. Table I). Overall, the transformation can be viewed as a steady loss of

the excess surface area, as the cell becomes increasingly swollen.48 In this subsection, we

investigate the passage and blockage of iRBCs having the four shapes indicated in Table I for

the ring, early trophozoite, late trophozoite and schizont stages. The shear modulus is fixed at

Gs ¼ 15 lN=m according to prior measurements.6,13 Although we will refer to these cell mor-

phologies by the stages of infection, the cells have no merozoite inside.

Consider the narrow channel first, with a width of w ¼ 3:2 lm in the mid-section. Our sim-

ulations show that only the ring-stage iRBC can pass, and all the other cell shapes block the

channel. Figure 10 depicts the steady-state shape of the iRBC after blockage. Once the iRBC is

arrested at the contraction, the negative pressure downstream draws out a tongue from the cell

membrane, whose length lt is plotted as a function of the excess surface area ratio se. With the

loss of excess surface area, lt decreases monotonically. Much as in micropipette aspiration, this

indicates a gradual loss of the cell’s deformability. Increasing the pressure drop DP will deform

the cell more and produce a longer protrusion. However, within the range tested in our numeri-

cal experimentation, we were unable to deform any of the three shapes sufficiently, so that it

passes the narrow channel.

FIG. 10. Steady-state shape of the iRBC in the early trophozoite, late trophozoite, and schizont stages after it blocks the

narrow channel (w ¼ 3:2 lm). The length of the tongue lt, defined as the distance between the cell front and the channel

entry and scaled by the channel length L, is plotted as a function of the excess surface area ratio se. Color contours of the

surface stretching c are also shown in the insets.

044115-12 T. Wu and J. J. Feng Biomicrofluidics 7, 044115 (2013)



In this connection, it is interesting to note the concept of minimum cylindrical diameter

(MCD) that has been used to interpret recent experiments on cell entry into microfluidic

channels.65–67 Because of its fixed surface area and volume, a red cell can at most be stretched

into a cylinder of a certain length and diameter, and thus would fail to enter a thinner capillary

regardless of the magnitude of forcing. In our view, the MCD thus defined is not an optimal in-

dicator of cell blockage of capillaries. It is a purely geometric lower-bound that does not

account for the dynamic aspects of the passage process. For instance, in microfluidic channels

as well as in vivo, the pressure gradient available is of finite magnitude. Thus, blockage may

appear in channels much wider than MCD, far before the cell is stretched into a cylindrical

shape (cf. insets in Figs. 8 and 10). Numerical experiments show this to be the case, especially

for relatively high values of the membrane modulus. Besides, MCD is defined for a cylindrical

tube and does not apply to passage through the narrow slit in the spleen nor through microflui-

dic channels having rectangular cross-sections.

In the medium and wide channels, most of the four iRBC shapes pass without occlusion. The

sole exception is the schizont-stage iRBC blocking the medium channel. Figure 11 plots the cell

transit time tt as a function of se. From the ring stage (se ¼ 1:34) to the late trophozoite stage

(se ¼ 1:15), the cell surface area remains more or less constant while the cell volume increases

(Table I). Consequently, tt increases monotonously with decreasing se in both channels as the grad-

ual swelling of the cell makes deformation more difficult. The schizont shape, more spherical with

the lowest se ¼ 1:04, corresponds to much reduced cell volume and surface area. This decreases

deformability and causes blockage of the medium channel. Through the wide channel, on the other

hand, not only does the schizont-iRBC manage to pass but it takes the least transit time among all

cases. This anomaly is mainly due to the much smaller cell volume of the schizont shape; the

iRBC barely needs to deform in order to enter the contraction. To sum up, the excess surface area

ratio se is a key determinant of cell deformability, especially when large deformation is required

for passing narrow pores. In relatively wide channels, the cell size also plays a role.

C. Effect of the parasites cluster

Through the three stages of malaria infection, the parasite changes shape and increases in

size, eventually taking up more than half of the volume of the host red cell in the schizont

stage.14,15 In this subsection, we focus on the effect of the parasite volume on transit of the iRBC

through a microfluidic channel. In the ring stage, the merozoite develops into a disc 2 lm in di-

ameter and 0.5 lm in thickness. Simulations show that the ring-stage iRBC can pass through all

three channels. This agrees with the observations of Shelby et al.10 in microfluidic channels of

similar size (Fig. 1) and is also consistent with the conclusion of Hosseini and Feng9 that the

ring-stage merozoite is too small to hinder cell deformation in stretching simulations.

FIG. 11. The transit time tt through the medium and wide channels as functions of the excess surface area ratio se. The

transit time is scaled by T.
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In trophozoite and schizont stages, we have systematically varied the parasite size for each

of the iRBC shapes of Figs. 3 and 4 and Table I, with the membrane shear modulus fixed at

Gs ¼ 15 lN=m. A clear trend emerges for all three channels: increasing parasite size eventually

causes blockage, and the minimum parasite size increases for blocking wider channels. In the

following, we will only present results of the schizont iRBC in the wide channel (w ¼ 4:8 lm),

with the iRBC having a spheroidal shape and containing a rigid spheroidal parasite of the same

aspect ratio 1.6 (Fig. 4). In reality, the parasite multiplies into dozens of merozoites closely

packed inside a digestive vacuole at the center of the iRBC.4,68 Our spheroidal parasite repre-

sents the entire vacuole. The iRBC radius is fixed at 3.2 lm, and we vary the radius of the para-

site from 1.6 to 2 lm.

Figure 12 shows the trajectories of the iRBC for two sizes of the parasite. A baseline case

with no parasite is also shown for comparison. Not surprisingly, having the parasite slows down

the passage. With the large parasite, the iRBC blocks the contraction. Note that in this case, the

parasite is still considerably smaller than the channel size. The occlusion is not due directly to

the solid parasite blocking the channel, but indirectly to the parasite constraining the deformation

of the cell. The membrane presses against the solid parasite and deforms less as a result, a

scenario previously analyzed in stretching of iRBC by optical tweezers.9 Recall that membrane-

parasite overlap is prohibited in our model by a repulsive potential. As one may expect, the criti-

cal parasite size for occlusion decreases for narrower channels and higher membrane stiffness.

It is interesting to point out that a smaller parasite tends to move forward inside the cell

during the transit and ends up in the front part of the cell (see top inset in Fig. 12). A larger

parasite, on the other hand, feels the resistance from the constricting channel walls. It tends to

move more slowly and shift toward the rear portion of the cell. In particularly, when blockage

happens, the parasite is pushed against the rear end of the membrane (see bottom inset in Fig.

12). Conceivably, this is a precursor to “pitting,” when the parasite is expelled from the cell

through a temporary opening in the membrane. Such a process has been observed in vivo69 and

in microfluidic channels.10

D. Combinations

In this subsection, we integrate all three factors examined above, stiffening of the cell

membrane, changes in cell morphology and parasite growth, into a series of simulations that

mimic the evolution of iRBC through the various stages of infection. Following microfluidic

experiments,10,12,65,67 we correlate the appearance of blockage in channels of different width

with the overall loss of deformability. For the healthy red cell, we take Gs ¼ 5 lN=m; while for

all stages of infection, we use a constant Gs ¼ 15 lN=m in accordance to prior measurements

FIG. 12. Trajectories of the schizont-stage iRBC in the wide channel (w ¼ 4:8 lm) with a parasite of different sizes. R¼ 0

indicates a baseline case without parasite, and the insets are snapshots of the parasite configuration for the other two

trajectories.
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and computations.6,9,13 The shape and size of the iRBC and the parasite are those of Table I

and Figs. 2–4. Note that we differentiate between the early and late trophozoite stages.

Inspired by images from the microfluidic experiments of Shelby et al.10 (Fig. 1), we sum-

marize our results in a tabular form (Table II). Evidently, with the progression of malaria

infection, the iRBC gradually loses its deformability and causes blockage of larger and larger

channels. The healthy RBC is able to pass through all three channels used in the current study.

So is the iRBC in the ring stage. Infected red cells in the early and late trophozoite stages pass

through the wide channel but block the medium and narrow ones. In the schizont stage, the

iRBC blocks even the wide channel. These results are in qualitative agreement with the experi-

ment of Shelby et al.10 In fact, one may even claim a degree of quantitative agreement. For

example, they reported that trophozoite-stage iRBCs block a channel 4 lm in width but pass

freely through a 6 lm channel, and schizont-stage iRBCs block a 6 lm channel but traverse a

8 lm channel. However, we should note that our channel geometry and pressure drop have not

been precisely matched with those in the experiment. Incidentally, Shelby et al.10 also observed

an interesting phenomenon of “jamming,” with two or more cells clogging the contraction lead-

ing to the narrow part of the flow conduit (Fig. 1). In this case, the adhesion among iRBCs

plays an important role in causing the blockage. Since our simulation deals only with single red

cells, we cannot capture the jamming phenomenon.

V. CONCLUSION

In this article, we report a smoothed-particle-hydrodynamics simulation of the transit of

healthy and malaria-infected red blood cells through microfluidic channels. The main conclu-

sion is that with progression of the malaria infection, the red cell gradually loses its deformabil-

ity, measured by its ability to pass through a microchannel of a certain dimension. In our

discrete model, the cell membrane is represented by a particle-spring network that possesses in-

plane elasticity as well as bending elasticity. The parasite is modeled by a group of particles

constrained to move as a rigid body. The cytosol and surrounding liquid are discretized into

standard SPH particles, and the entire fluid-solid system is simulated by an explicit SPH algo-

rithm. The main objective of the work is to probe how changes in the cell membrane rigidity,

the excess surface area of the cell and the size of the parasite, individually and taken together,

affect the transit of the infected red cell through a microfluidic channel. Within the parameter

ranges explored, the results can be summarized as follows:

(a) The rigidity of the cell membrane hinders passage of the cell through microfluidic channels.

The transit time increases with increasing membrane modulus, especially for the narrower

channels. Blockage occurs for sufficiently stiff membranes. These results agree qualitatively

with experimental observations.12

(b) The progressive loss of excess surface area impairs the capability of the infected red cell in

traversing narrow channels, and blockage occurs for sufficiently low excess surface area ra-

tio. This agrees qualitatively with previous microfluidic experiments.67

(c) The presence of the parasite reduces the deformability of infected red cells, and the effect

increases as the parasite grows. The parasite may cause occlusion of microfluidic channels

TABLE II. The passage and blockage of healthy and infected red blood cells through microfluidic channels of different

size.

w ¼ 3:2 lm 4 lm 4.8 lm

Healthy passage passage passage

Ring passage passage passage

Early trophozoite blockage blockage passage

Late trophozoite blockage blockage passage

Schizont blockage blockage blockage
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considerably larger than the parasite size. This result confirms previous speculations6 and is

consistent with prior computational studies of cell stretching.9

(d) In reality, all three factors are at play, and the numerical simulations successfully reproduce

the experimental picture of infected red cells occluding larger and larger channels with the

progression of infection. However, it is not straightforward to quantify the separate contribu-

tion of each factor and make a meaningful comparison among them.

(e) The numerical simulations suggest that red cell rigidification at different stages of infection

can be quantified by measuring the critical pressure drop required for passage through a con-

stricting channel of a certain geometry. This provides a basis for developing microfluidic

cell assays.

We should point out the assumptions and simplifications in our model that may have lim-

ited the fidelity and accuracy of the numerical results. The actual RBC membrane has a com-

plex structure, and only the grossest features are retained in our particle-spring network. For

one, infected red cells often present an irregular surface morphology, with spikes and knobs

(cf. Fig. 1). The structural changes underlying such shapes are not accounted for in our model.

We enforce areal conservation via an ad hoc energy penalty, not from the intrinsic constitutive

behavior of the membrane. A potential remedy to this is to employ nonlinear springs that gener-

ate stronger strain-hardening for the membrane as a whole.37 In addition, we have omitted

membrane viscosity altogether. Prior work has indicated an essential role for this viscosity in

determining the times scale of the membrane relaxation.59 Moreover, we have assumed equal

viscosity for the cytosol and suspending fluid for simplicity. In reality, the cytosol viscosity is

considerably higher than that of the plasma57 and may evolve dynamically as the parasite

modifies the chemical composition of the cytosol. Finally, this study has focused on the

deformability of infected red cells and disregarded cytoadherence, another important factor in

the pathogenesis of malaria.8 Pathologically enhanced adherence among infected red cells and

with the vascular endothelium plays a definite role in obstruction of microcapillaries, as experi-

ments in microfluidic channels have already suggested.10 In future work, these simplifications

should be examined and possibly removed in more sophisticated and faithful simulations.

Toward the goal of quantifying the deformation of healthy and infected red cells in micro-

fluidic channels, this paper represents an initial step: we have proposed and investigated a com-

putational model that is numerically reliable but drastically idealized in its physical elements.

The logical next step is to compare its predictions with in vitro experiments. This will allow

one to assess the validity of the physical assumptions in the model. We have barely addressed

this issue in the current study and will devote a separate effort to it. Only after establishing a

realistic and accurate computational model, we can hope to turn the microfluidic channel into a

quantitative tool for analyzing cell properties.
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